CALIDAD DE MOVIMIENTO Y CINEANTROPOMETRIA Influencia de la Masa y la Composición Corporal en la valoración del Functional Movement Screen (FMS)
Published 31-12-2021
Keywords
- Functional Movement Screen,
- Motor Control,
- Kineanthropometry,
- Body Composition,
- Correlation
How to Cite
Copyright (c) 2021 Antivero Enrique, Antivero Ernesto, González Noelia, Ginnobili Ignacio, Ciafardini Nicolás, Villares Marcelo, Alzaga Micaela, Rodriguez Milton
This work is licensed under a Creative Commons Attribution 4.0 International License.
Dimensions
Abstract
Aims: To investigate the possible influence of body mass and composition in the assessment of the Functional Movement Screen (FMS) with Physical Activity and Sport students (N = 30, 15 female and 15 male).Methods: Prior to the assessment of the 7 (seven) FMS tests, a set of measurements were administered to determine the anthropometric characteristics, estimate body masses and quantify the level of manual grasp of the voluntary sample under study. Results: The non-probabilistic sample reported a final score for the FMS (S) of 16.17 ± 1.66. The average value of the 7 (seven) tests (XS) was 2.31 ± 0.24 and of the first 3 (three) or Big Three (B3) 2.21 ± 0.31. The female and male sample scored 16.47 ± 1.51, 2.36 ± 0.22, 2.31 ± 0.23 and 15.87 ± 1.81, 2.27 ± 0.26, 2.11 ± 0.35 respectively, with differences between genders only for the Trunk Stability Push-UP (TPU) (p <0.05 ). The correlations of the total sample were optimized in the female and male subjects of Body Mass (BM) higher than the average of the WHO parameter of weight for adults (n = 19), in the association of S and XS with the Percentage Difference of the Body Mass with respect to the WHO weight parameter for adults (WHO%) (rs -0.44) and BMI (rs -0.50) respectively (p <0.05). The highest correlations in the study were obtained with those male subjects with a BM higher than the average of the WHO weight parameter for adults (n = 11), among them WHO% with S (rs -0.71), SX (rs -0.71) and B3 (rs -0.76), and BMI with S (rs -0.70), SX (rs -0.70) and B3 (rs -0.73). Conclusions: Despite the growing negative trend of the increase in BM in Movement Quality, further study will be necessary to determine if the variation in the FMS assessment could be strictly linked to anthropometric factors, particularly with respect to tests with discharge of body mass.
References
- Antivero E, Antivero Er, Ginnobili I, González N, (2015). Ergonomía Laboral. Costo energético durante la actividad laboral de oficina. Descripción de la postura sentado habitual y determinación del Costo Energético (VO2) durante tareas laborales pasivas de oficina del personal administrativo de la Universidad de Flores. Informe final, Secretaría Científica de la Universidad de Flores, Sede Comahue, Cipolletti.
- Antivero E, Antivero Er, Ginnobili I, González N, Giroldi M (2013). Descripción de la Pisada y Determinación del Consumo de Oxígeno en Pedestrismo con utilización de calzado deportivo con Plantillas Ergonómicas vs Genéricas. Informe final, Secretaría Científica de la Universidad de Flores, Sede Comahue, Cipolletti.
- Bond B., Goodson L., Oxford S.W., Nevill A.M., Duncan M.J. (2015). The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers. Sports, 3: 1-11.
- Cole T.J., Bellizzi M.C., Flegal K.M., Dietz W.H. (2000). Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243.
- Cook G. (2011). Movement: Functional Movement Systems: Screening, Assessment, Corrective Strategies. Lotus Pub.
- Cuchna J.W., Hoch M.C., Hoch J.M. (2016). The interrater and intrarater reliability of the functional movement screen: A systematic review with meta-analysis. Phys Ther Sport.May,19:57-65.
- Duncan M.J., Stanley M. (2012). Functional movement is negatively associated with weight status and positively associated with physical activity in British primary school children. J Obes. 2012;2012:697563. doi: 10.1155/2012/697563. Epub 2012 Mar 26.
- Enoka R.M., Fuglevand A.J. (2001). Motor unit physiology: Some unresolved issues. Muscle Nerve, 24: 4–17, 2001.
- Garcia-Pinillos F., Párraga-Montilla J., Roche-Seruendo L.E., Delgado-Floody P., Martínez- Salazar C.P., Latorre-Román P.A. (2019) ¿Influyen la edad y el sexo en la funcionalidad del movimiento de niños en edad escolar?. Retos, número 35.
- González Badillo J.J. (2001). Metodología para el Desarrollo, Programación para el Entrenamiento de la Fuerza, y Métodos de Análisis de la Exigencia de la Condición Física. Madrid: COES.
- Gribble P.A., Brigle J., Pietrosimone B.G., Pfile K.R., Webster K.A. (2013). Intrarater reliability of the functional movement screen. J Strength Cond Res. 27(4):978-81.Holway F. (2009). Antropogim s2, Buenos Aires.
- Kerr, D.A. (1998). An anathropometric method for the fractiona- tion of skin, adipose, muscle, bone and residual tissue masses in males and témales age 6 to 77 years. M. Se. thesis. Simón Fraser University, Canadá.
- Komi P. (1994). Strength and Power in Sport. The Encyclopaedia of Sport Medicine. Blackwell Science.
- Komi P. (2011). Neuromuscular Aspects of Sports Performance. Ed. Wiley-Blackwell, Oxford.
- Latash M.L., Zatsiorsky V.M. (2016). Biomechanics and Motor Control: Defining Central Concepts. Academic Press: New York, NY.
- López-Fuenzalida A.E., Rodríguez Canales C.I., Cerda Vega E.A., Arriaza Ardiles E.J., Reyes Ponce A.R., Valdés-Badilla P. (2016). Asociación entre características antropométricas y funcionalidad motriz en sujetos chilenos con distintos niveles de actividad física. ARCHIVOS LATINOAMERICANOS DE NUTRICIÓN, Vol. 66 N° 3.
- Mac Dougall J.D., Wenger H.A., Green H.J. (2005). Evaluación Fisiológica del Deportista. Paidotribo.
- Matsudo V.K.R., Matsudo S.M., Rezende L.F.M., Raso V. (2015). Handgrip strength as a predictor of physical fitness in children and adolescents. Rev Bras Cineantropom Desempenho Hum, 17(1):1-10.
- Minicik K.I., Kiesel K.B., Burton I., Taylor A., Plisky P., Butler R.J. (2010). Interrater reliability of the functional movement screen. J Strength Cond Res, 24:479–486.
- Moran R.W., Schneiders A.G., Major K.M., Sullivan S.J. (2016). How reliable are Functional Movement Screening scores? A systematic review of rater reliability. Br J Sports Med. 50(9):527-36.
- Onate J.A., Dewey T., Kollock R.O., Thomas K.S., Van Lunen B.L., DeMaio M., Ringleb S.I. (2012). Real-time intersession and interrater reliability of the functional movement screen. J Strength Cond Res. 26(2):408-15.
- Smith C.A., Chimera N.J., Wright N.J., Warren M. (2013). Interrater and intrarater reliability of the functional movement screen. J Strength Cond Res. 27(4):982-987.
- Stobierski L.M., Fayson S.D., Minthorn L.M., Valovich McLeod T.C., Welch C.E. (2015). Reliability of clinician scoring of the functional movement screen to assess movement patterns. J Sport Rehabil. 24(2):219-22.
- Teyhen D.S., Shaffer S.W., Lorenson C.L., Halfpap J.P., Donofry D.F., Walker M.J., Dugan J.L., Childs J.D. (2012). The Functional Movement Screen: a reliability study. J Orthop Sports Phys Ther. Jun, 42(6):530-40.
- Thomas J. R, Nelson J. K. (1996). Research Methods in Physical Activity 3rd Edition. Human Kinetics United States.
- Zatsiorski, V. (1995). Science and Practice of Strenght Training. Ed. Human Kinetics, Champaign.