Interaction of Body Mass Index and Sex on Pulmonary Function Tests among patients with Chronic Obstructive Respiratory Disease: An Observational study from a Tertiary Centre in India

Arpita Chakraborty
Department of Physiology, All India Institute of Medical Sciences, Kalyani, West Bengal, India
Subhadeep Ghoshal
Department of Physiology, All India Institute of Medical Sciences, Kalyani, West Bengal, India
Suraiya Ferdous
Department of Physiology, All India Institute of Medical Sciences, Kalyani, West Bengal, India
Shaikh Alpa Nasrin Samuel
Department of Physiology, All India Institute of Medical Sciences, Kalyani, West Bengal, India
Rubia Mondal
Department of Physiology, All India Institute of Medical Sciences, Kalyani, West Bengal, India
Tandra Ghosh
Department of Physiology, All India Institute of Medical Sciences, Kalyani, West Bengal, India

Published 20-04-2025

Keywords

  • Pulmonary Function Test,
  • BMI,
  • Obesity,
  • Sex,
  • Chronic respiratory disease

How to Cite

Chakraborty, A., Ghoshal, S., Ferdous, S., Nasrin Samuel, S. A., Mondal, R., & Ghosh, T. (2025). Interaction of Body Mass Index and Sex on Pulmonary Function Tests among patients with Chronic Obstructive Respiratory Disease: An Observational study from a Tertiary Centre in India. International Journal of Kinanthropometry, 5(1), 140–153. https://doi.org/10.34256/ijk25114

Dimensions

Abstract

Introduction: Obesity has unique role in chronic disease like Chronic Obstructive Respiratory Disease; Patients with higher obesity have been reported to have better life expectancy than underweight patients. But this particular obesity paradox has been studied very less among the Indian population. The interaction of obesity with sex is an important factor as the fat distribution varies differently among male and females. Methods: Hospital based observational study. Here the anthropometric parameters and pulmonary function testing were recorded from 951 chronic respiratory disease patients. The relation and association were studied through Correlation, Regression and MANOVA. Results: A significant interaction effect between sex and BMI was observed for both FVC and FEV1, indicating that the impact of BMI on pulmonary function differs by Sex. Specifically, underweight males had disproportionately lower FVC and FEV1 values compared to their female counterparts. This suggests a possible synergistic vulnerability of respiratory function in underweight males Conclusion: In summary, this study reinforces the significant influence of sex on pulmonary function and highlights the nuanced role of BMI, particularly in its interaction with sex. These findings underline the importance of individualized interpretation of PFTs that account for both anthropometric and sex-based physiological differences. Further research is needed to explore underlying mechanisms and potential clinical implications in diverse populations.

References

  1. Aaron, S.D., Dales, R., Cardinal, P. (1999). How accurate is spirometry at predicting restrictive pulmonary impairment?. Chest, 115(3): 869-873. https://doi.org/10.1378/chest.115.3.869
  2. Barroso, A.T., Martín, E.M., Romero, L.M.R., Ruiz, F.O. (2018). Factors affecting lung function: a review of the literature. Archivos de Bronconeumología (English Edition), 54(6): 327-332. https://doi.org/10.1016/j.arbr.2018.04.003
  3. Becklake, M.R., Kauffmann, F. (1999).Gender differences in airway behaviour over the human life span.Thorax, 54(12): 1119-1138. https://doi.org/10.1136/thx.54.12.1119
  4. Biring, M.S., Lewis, M.I., Liu, J.T., Mohsenifar, Z. (1999). Pulmonary physiologic changes of morbid obesity. The American journal of the medical sciences, 318(5): 293-297. https://doi.org/10.1097/00000441-199911000-00002
  5. Chen, Y., Rennie, D., Cormier, Y.F., Dosman, J. (2007). Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. The American journal of clinical nutrition, 85(1): 35-39. https://doi.org/10.1093/ajcn/85.1.35
  6. Collins, L.C., Hoberty, P.D., Walker, J.F., Fletcher, E.C., Peiris, A.N. (1995). The effect of body fat distributionon pulmonary function tests. Chest,107(5):1298-1302. https://doi.org/10.1378/chest.107.5.1298
  7. Elagizi, A., Kachur, S., Lavie, C.J., Carbone, S., Pandey, A., Ortega, F.B., Milani, R.V. (2018). An overview and update on obesity and the obesity paradox in cardiovascular diseases. Progress in cardiovascular diseases, 61(2): 142-150. https://doi.org/10.1016/j.pcad.2018.07.003
  8. Ferguson G.T., Enright P.L., Buist A.S. Higgins, M.W. (2000)"Office spirometry for lung health assessment in adults: A consensus statement from the National lung health education program" ’, Chest Journal 117(4): 1146–1161. https://doi.org/10.1378/chest.117.4.1146
  9. Graham, B.L., Steenbruggen, I., Miller, M.R., Barjaktarevic, I. Z., Cooper, B.G., Hall, G.L., Hallstrand, T.S., Kaminsky, D.A., McCarthy, K., McCormack, M.C., Oropez, C.E (2019). Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. American journal of respiratory and critical care medicine, 200(8): e70-e88. https://doi.org/10.1164/rccm.201908-1590st
  10. Harik-Khan, R.I., Wise, R.A., Fleg, J.L. (2001). The effect of gender on the relationship between body fat distribution and lung function. Journal of clinical epidemiology, 54(4): 399-406. https://doi.org/10.1016/s0895-4356(00)00318-8
  11. Jithoo, A., Enright, P. L., Burney, P., Buist, A. S., Bateman, E. D., Tan, W. C., ... & Vollmer, W. M. (2013). Case-finding options for COPD: results from the Burden of Obstructive Lung Disease study. European Respiratory Journal, 41(3), 548-555.
  12. Jones, R.L., Nzekwu, M.M. (2006). The effects of body mass index on lung volumes. Chest, 130(3): 827–833. https://doi.org/10.1378/chest.130.3.827
  13. Lazarus, R., Sparrow, D., Weiss, S.T. (1997). Effects of obesity and fat distribution on ventilatory function: the normative aging study. Chest, 111(4): 891-898. https://doi.org/10.1378/chest.111.4.891
  14. Liang, B.M., Lam, D.C., Feng, Y.L. (2012). Clinical applications of lung function tests: a revisit. Respirology, 17(4): 611-619. https://doi.org/10.1111/j.1440-1843.2012.02149.x
  15. Littleton,S.W.,Impact of obesity on respiratory function. Respirology, 17(1): 43-49. https://doi.org/10.1111/j.1440-1843.2011.02096.x
  16. LoMauro, A., Aliverti, A. (2018). Sex differences in respiratory function. Breathe, 14(2): 131-140. https://doi.org/10.1183/20734735.000318
  17. LoMauro, A., Aliverti, A. (2018).Sex differences in respiratory function. Breathe, 14(2): 131–140. https://doi.org/10.1183/20734735.000318
  18. Marfell-Jones, M., Olds, T., Stewart, A., Carter, L. (2006). International standards for anthropometric assessment (2006). https://doi.org/10.4324/9780203970157
  19. Miller, M. R., Hankinson, J. A. T. S., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., ... & Wanger, J. A. T. S. (2005). Standardisation of spirometry. European respiratory journal, 26(2), 319-338.
  20. National Guideline Centre (UK). (2021, November). Evidence review for symptoms and signs indicating need for echocardiography or direct referral to a specialist: Heart valve disease presenting in adults: Investigation and management: Evidence review A (NICE Guideline No. 208). National Institute for Health and Care Excellence (NICE). https://www.ncbi.nlm.nih.gov/books/NBK577828/
  21. Pellegrino, R., Viegi, G., Brusasco, V., Crapo, R. O., Burgos, F., Casaburi, R. E. A., ... & Wanger, J. (2005). Interpretative strategies for lung function tests. European respiratory journal, 26(5), 948-968.
  22. Pellegrino, R.,Viegi, G., Brusasco, V., Crapo, R.O., Burgos, F., Casaburi, R.E.A., Coates, A., Van Der Grinten, C.P.M., Gustafsson, P., Hankinson, J. and Jensen, R., 2005. Interpretative strategies for lung function tests. European respiratory journal, 26(5): 948–968. https://doi.org/10.1183/09031936.05.00035205
  23. Quanjer, P. H., Stanojevic, S., Cole, T. J., Baur, X., Hall, G. L., Culver, B. H., ... & ERS Global Lung Function Initiative. (2012). Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations.
  24. Ranu, H., Wilde, M., Madden, B. (2011). Pulmonary function tests. The Ulster medical journal, 80(2): 84.
  25. Salome, C.M., King, G.G., Berend, N. (2010). Physiology of obesity and effects on lung function. Journal of applied physiology, 108(1): 206-211. https://doi.org/10.1152/japplphysiol.00694.2009
  26. Solanki, S., Mirdha, P., Choudhary, R. (2016). A comparative study of pulmonary function in healthy male and female subjects of western Rajasthan. Sch J App Med Sci, 4(9D): 3398-3401. https://doi.org/10.36347/sjams.2021.v09i03.014
  27. Stanojevic, S., Wade, A., Stocks, J., Hankinson, J., Coates, A. L., Pan, H., Rosenthal, M., Corey, M., Lebecque, P., Cole, T. J. (2008). Reference ranges for spirometry across all ages: a new approach. American journal of respiratory and critical care medicine, 177(3): 253-260. https://doi.org/10.1164/rccm.200708-1248oc
  28. Steier, J., Lunt, A., Hart, N., Polkey, M.I., Moxham, J. (2014). Observational study of the effect of obesity on lung volumes. Thorax, 69(8): 752-759. https://doi.org/10.1136/thoraxjnl-2014-205148
  29. Tan, K. C. B. (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The lancet. https://doi.org/10.1016/s0140-6736(03)15268-3
  30. World Health Organization. (2000). The Asia-Pacific perspective: redefining obesity and its treatment. http://www. who. int/bmi/index. jsp? introPage= intro_3. html. https://doi.org/10.18111/9789284414369
  31. Zakaria, R., Harif, N., Al-Rahbi, B., Aziz, C. B. A., & Ahmad, A. H. (2019). Gender differences and obesity influence on pulmonary function parameters. Oman medical journal, 34(1), 44. http://doi.org/10.5001/omj.2019.07