Development and Validation of A New Anthropometric Predictive Equation For Estimating Fat Mass In Elite Male Soccer Players
Published 14-04-2025
Keywords
- Anthropometry,
- Body Composition,
- Body Fat,
- DXA,
- Sport
- Skinfolds ...More
How to Cite
Copyright (c) 2025 Francesco Campa, Alessio Rossi, Giulia Martera, Athos Trecroci, Tindaro Bongiovanni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dimensions
Abstract
Introduction: The present study aimed i) to develop and validate an anthropometric soccer-specific equation for predicting fat mass (FM) using dual energy X-ray absorptiometry (DXA) as a reference method; ii) to assess the performance of existing soccer-specific predictive equations. Methods: Eighty male soccer players (aged 24.4±5.4 years, BMI 23.7±1.2 kg/m2) participating in the first Italian league underwent anthropometric measurements and DXA scan during the in-season period. The participants were divided into development and validation groups. The validation group returned for a second assessment three months later and was included in an analysis of longitudinal validity. Results: The best developed model was: FM (kg)= -9.905 + (sum of triceps, iliac crest, abdominal, and front thigh skinfolds (mm) × 0.175) + (thigh girth (cm) × 0.258) - (ethnicity × 1.577) - (age (years) × 0.068), R2=0.73, standard error of estimation (SEE)=1.01 kg, where ethnicity is 1 for black and 0 for white. Cross-sectional validation showed r2 values ranging from 0.71 to 0.72 with SEE equal to 0.80 kg and 0.86 kg for the baseline and the second assessments, respectively. Concordance correlation coefficients (CCC) were 0.84 at baseline and 0.86 at the second visit. The agreement analysis showed no mean bias at any time (p>0.05) and lower 95% limits of agreement (LoA) ranging from -1.5 kg to 1.8 kg. Longitudinal validation demonstrated a high accuracy at both group (r2= 0.80, SEE= 0.37 kg, CCC= 0.90) and individual (mean bias= 0.04 kg, 95%LoA= -0.7 kg to 0.8 kg, r= 0.117) levels. In contrast, the FM estimated from existing predictive equations differed from DXA for all the cross-sectional and longitudinal assessments, showing less accuracy compared to the new equation. Conclusions: This study presents a new soccer-specific predictive equation based on four skinfolds and a girth, allowing for a valid and sport-specific assessment of FM across the competitive season.
References
- Ackland, T.R., Lohman, T.G., Sundgot-Borgen, J., Maughan, R.J., Meyer, N.L., Stewart, A.D., Müller, W. (2012). Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Medicine, 42(3): 227–249. https://doi.org/10.2165/11597140-000000000-00000
- Bland, J.M., Altman, D.G., Warner, D.S. (2012). Agreed Statistics: Measurement Method Comparison. The Journal of the American Society of Anesthesiologists, 116(1): 182–185. https://doi.org/10.1097/ALN.0b013e31823d7784
- Campa, F., Bongiovanni, T., Trecroci, A., Rossi, A., Greco, G., Pasta, G., Coratella, G. (2021). Effects of the COVID-19 Lockdown on Body Composition and Bioelectrical Phase Angle in Serie A Soccer Players: A Comparison of Two Consecutive Seasons. Biology, 10(11): 1175. https://doi.org/10.3390/biology10111175
- Campa, F., Matias, C.N., Moro, T., Cerullo, G., Casolo, A., Teixeira, F.J., Paoli, A. (2023). Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry. Nutrients, 15(2): 278. https://doi.org/10.3390/nu15020278
- Campa, F., Semprini, G., Judice, P. B., Messina, G., Toselli, S. (2019). Anthropometry, Physical and Movement Features, and Repeated-sprint Ability in Soccer Players. International Journal of Sports Medicine, 40(2): 100–109. https://doi.org/10.1055/a-0781-2473
- Campa, F., Toselli, S., Mazzilli, M., Gobbo, L. A., & Coratella, G. (2021). Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients, 13(5): 1620. https://doi.org/10.3390/nu13051620
- Carling, C., Orhant, E. (2010). Variation in body composition in professional soccer players: interseasonal and intraseasonal changes and the effects of exposure time and player position. Journal of Strength and Conditioning Research, 24(5): 1332–1339. https://doi.org/10.1519/JSC.0b013e3181cc6154
- Collins, J., Maughan, R. J., Gleeson, M., Bilsborough, J., Jeukendrup, A., Morton, J. P., Phillips, S. M., Armstrong, L., Burke, L. M., Close, G. L., Duffield, R., Larson-Meyer, E., Louis, J., Medina, D., Meyer, F., Rollo, I., Sundgot-Borgen, J., Wall, B. T., Boullosa, B., Dupont, G., Lizarraga, A., Res, P., Bizzini, M., Castagna, C., Cowie, C.M., Hooghe, M.D., Geye, H., Meyer, T., Papadimitriou, N., Vouillamoz, M., McCall, A. (2021). UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. British Journal of Sports Medicine, 55(8): 416. https://doi.org/10.1136/bjsports-2019-101961
- Durnin, J.V., Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The British Journal of Nutrition, 32(1): 77–97. https://doi.org/10.1079/BJN19740060
- Evans, E.M., Rowe, D.A., Misic, M.M., Prior, B.M., Arngrímsson, S.A. (2005). Skinfold prediction equation for athletes developed using a four-component model. Medicine and Science in Sports and Exercise, 37(11): 2006–2011. https://doi.org/10.1249/01.mss.0000176682.54071.5c
- Giro, R., Matias, C.N., Campa, F., Santos, D.A., Cavaca, M.L., Duque, P., Oliveira, M., Matos, N., Vicente, F., Pereira, P., Santos, H.O., Tinsley, G.M., Teixeira, F.J. (2022). Development and Validation of an Anthropometric Equation to Predict Fat Mass Percentage in Professional and Semi-Professional Male Futsal Players. Nutrients, 14(21): 4514. https://doi.org/10.3390/nu14214514
- Heymsfield, S., Lohman, T., Wang, Z., Going, S. (2005). Human body composition. Human Kinetics. https://doi.org/10.5040/9781492596950
- International Society for Advancement of Kinanthropometry. (2001). International standards for anthropometric assessment. International Society for the Advancement of Kinanthropometry.
- Jackson, A.S., Pollock, M.L. (1978). Generalized equations for predicting body density of men. The British Journal of Nutrition, 40(3): 497–504. https://doi.org/10.1079/BJN19780152
- Kasper, A.M., Langan-Evans, C., Hudson, J.F., Brownlee, T.E., Harper, L.D., Naughton, R.J., Morton, J.P., Close, G.L. (2021). Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients, 13(4): 1075. https://doi.org/10.3390/nu13041075
- Kirkendall, D.T., Grogan, J.W., Bowers, R.G. (1991). Field comparison of body composition techniques: hydrostatic weighing, skinfold thickness, and bioelectric impedance. The Journal of Orthopaedic and Sports Physical Therapy, 13(5): 235–239. https://www.jospt.org/doi/10.2519/jospt.1991.13.5.235
- Lin, L.I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1): 255–268. https://doi.org/10.2307/2532051
- López-Taylor, J.R., González-Mendoza, R.G., Gaytán-González, A., Jiménez-Alvarado, J.A., Villegas-Balcázar, M., Jáuregui-Ulloa, E.E., Torres-Naranjo, F. (2018). Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. Journal of Sports Medicine (Hindawi Publishing Corporation), 2018: 6843792. https://doi.org/10.1155/2018/6843792
- Mascherini, G., Gatterer, H., Lukaski, H., Burtscher, M., & Galanti, G. (2015). Changes in hydration, body-cell mass and endurance performance of professional soccer players through a competitive season. The Journal of Sports Medicine and Physical Fitness, 55(7–8): 749–755.
- Matias, C.N, Campa, F., Cavaca, M., Paoli, A., Teixeira, F. (2022). Fat-free mass estimation in male elite futsal players: development and validation of a new bioelectrical impedance-based predictive equation. Nutrition, 107: 111931. https://doi.org/10.1016/j.nut.2022.111931
- Matias, Catarina N, Campa, F., Santos, D.A., Lukaski, H., Sardinha, L.B., Silva, A.M. (2021). Fat-free Mass Bioelectrical Impedance Analysis Predictive Equation for Athletes using a 4-Compartment Model. International Journal of Sports Medicine, 42(1): 27–32. https://doi.org/10.1055/a-1179-6236
- McBride, G.B. (2007). Statistical calculators. Lin’s Concordance.
- Mondal, H., Mishra S.P. (2017). Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults. Journal of Clinical and Diagnostic Research. 11(6): https://doi.org/10.7860/JCDR/2017/25465.10039
- Nescolarde, L., Yanguas, J., Lukaski, H., Alomar, X., Rosell-Ferrer, J., Rodas, G. (2013). Localized bioimpedance to assess muscle injury. Physiological Measurement, 34(2): 237–245.
- Ostojic, S. M. (2002). Changes in body fat content of top-level soccer players. Journal of Sports Science & Medicine, 1(2): 54–55.
- Paoli, A., Cenci, L., Pompei, P., Sahin, N., Bianco, A., Neri, M., Caprio, M., Moro, T. (2021). Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients, 13(2): 374. https://doi.org/10.3390/nu13020374
- Paoli, A., Mancin, L., Caprio, M., Monti, E., Narici, M. V, Cenci, L., Piccini, F., Pincella, M., Grigoletto, D., & Marcolin, G. (2021). Effects of 30 days of ketogenic diet on body composition, muscle strength, muscle area, metabolism, and performance in semi-professional soccer players. Journal of the International Society of Sports Nutrition, 18(1): 62. https://doi.org/10.1186/s12970-021-00459-9
- Petri, C., Campa, F., Hugo Teixeira, V., Izzicupo, P., Galanti, G., Pizzi, A., Badicu, G., Mascherini, G. (2020). Body Fat Assessment in International Elite Soccer Referees. Journal of Functional Morphology and Kinesiology, 5(2): 38. https://doi.org/10.3390/jfmk5020038
- Reilly, T., George, K., Marfell-Jones, M., Scott, M., Sutton, L., Wallace, J. A. (2009). How well do skinfold equations predict percent body fat in elite soccer players?. International Journal of Sports Medicine, 30(8): 607–613. https://doi.org/10.1055/s-0029-1202353
- Santos, D.A., Dawson, J.A., Matias, C.N., Rocha, P.M., Minderico, C.S., Allison, D.B., Sardinha, L.B., Silva, A.M. (2014). Reference values for body composition and anthropometric measurements in athletes. PLoS ONE, 9(5): https://doi.org/10.1371/journal.pone.0097846
- Sardinha, L.B., Correia, I.R., Magalhães, J.P., Júdice, P.B., Silva, A.M., Hetherington-Rauth, M. (2020). Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes. European Journal of Clinical Nutrition, 74(12): 1646–1652. https://doi.org/10.1038/s41430-020-0666-8
- Silva, J.R., Brito, J., Akenhead, R., Nassis, G.P. (2016). The Transition Period in Soccer: A Window of Opportunity. Sports Medicine, 46(3): 305–313. https://doi.org/10.1007/s40279-015-0419-3
- Slimani, M., Nikolaidis, P.T. (2019). Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: a systematic review. The Journal of Sports Medicine and Physical Fitness, 59(1): 141–163. https://doi.org/10.23736/S0022-4707.17.07950-6
- Stratton, M.T., Smith, R.W., Harty, P.S., Rodriguez, C., Johnson, B.A., Dellinger, J.R., Williams, A.D., White, S.J., Benavides, M.L., Tinsley, G.M. (2021). Longitudinal agreement of four bioimpedance analyzers for detecting changes in raw bio impedance during purposeful weight gain with resistance training. European Journal of Clinical Nutrition, 75(7): 1060–1068. https://doi.org/10.1038/s41430-020-00811-3
- Suarez-Arrones, L., Lara-Lopez, P., Maldonado, R., Torreno, N., De Hoyo, M., Nakamura, F. Y., Di Salvo, V., & Mendez-Villanueva, A. (2019). The effects of detraining and retraining periods on fat-mass and fat-free mass in elite male soccer players. Peer Journal, 7: e7466. https://doi.org/10.7717/peerj.7466
- Suarez-Arrones, L., Petri, C., Maldonado, R.A., Torreno, N., Munguía-Izquierdo, D., Di Salvo, V., Méndez-Villanueva, A. (2018). Body fat assessment in elite soccer players: cross-validation of different field methods. Science and Medicine in Football, 2(3): 203–208. https://doi.org/10.1080/24733938.2018.1445871
- Wang, Z., Pi-Sunyer, F.X., Kotler, D. P., Wielopolski, L., Withers, R. T., Pierson, R. N. J., Heymsfield, S. B. (2002). Multicomponent methods: evaluation of new and traditional soft tissue mineral models by in vivo neutron activation analysis. The American Journal of Clinical Nutrition, 76(5): 968–974. https://doi.org/10.1093/ajcn/76.5.968
- Withers, R.T., Craig, N.P., Bourdon, P.C., Norton, K.I. (1987). Relative body fat and anthropometric prediction of body density of male athletes. European Journal of Applied Physiology and Occupational Physiology, 56(2): 191–200. https://doi.org/10.1007/BF00640643