Development and Validation of A New Anthropometric Predictive Equation For Estimating Fat Mass In Elite Male Soccer Players
Publicado 14-04-2025
Palabras clave
- Antropometría,
- Composición corporal,
- Grasa corporal,
- DXA,
- Deporte
- Pliegues cutáneos ...Más
Cómo citar
Derechos de autor 2025 Francesco Campa, Alessio Rossi, Giulia Martera, Athos Trecroci, Tindaro Bongiovanni

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Dimensions
Resumen
Introducción: El presente estudio tuvo como objetivo i) desarrollar y validar una ecuación antropométrica específica para el fútbol que permita predecir la masa grasa (MG) utilizando la absorciometría dual de rayos X (DXA) como método de referencia; ii) evaluar el rendimiento de las ecuaciones predictivas existentes específicas para el fútbol. Métodos: Ochenta futbolistas varones (edad 24,4 ± 5,4 años, IMC 23,7 ± 1,2 kg/m²) que participaban en la primera división italiana se sometieron a mediciones antropométricas y una DXA durante la temporada. Los participantes se dividieron en grupos de desarrollo y validación. El grupo de validación regresó para una segunda evaluación tres meses después y se incluyó en un análisis de validez longitudinal. Resultados: El modelo mejor desarrollado fue: FM (kg) = -9,905 + (suma de pliegues cutáneos de tríceps, cresta ilíaca, abdominal y muslo anterior (mm) × 0,175) + (circunferencia del muslo (cm) × 0,258) - (etnia × 1,577) - (edad (años) × 0,068), R2 = 0,73, error estándar de estimación (SEE) = 1,01 kg, donde la etnia es 1 para negro y 0 para blanco. La validación transversal mostró valores de r2 que van desde 0,71 a 0,72 con SEE igual a 0,80 kg y 0,86 kg para la línea base y la segunda evaluación, respectivamente. Los coeficientes de correlación de concordancia (CCC) fueron 0,84 al inicio y 0,86 en la segunda visita. El análisis de concordancia no mostró sesgo medio en ningún momento (p > 0,05) y límites de concordancia (LdA) inferiores al 95 %, que oscilaron entre -1,5 kg y 1,8 kg. La validación longitudinal demostró una alta precisión tanto a nivel grupal (r² = 0,80, SEE = 0,37 kg, CCC = 0,90) como individual (sesgo medio = 0,04 kg, LdA del 95 % = -0,7 kg a 0,8 kg, r = 0,117). Por el contrario, la MG estimada a partir de las ecuaciones predictivas existentes difirió de la DXA en todas las evaluaciones transversales y longitudinales, mostrando una menor precisión en comparación con la nueva ecuación. Conclusiones: Este estudio presenta una nueva ecuación predictiva específica para el fútbol basada en cuatro pliegues cutáneos y un perímetro, lo que permite una evaluación válida y específica del deporte de la MG a lo largo de la temporada competitiva.
Citas
- Ackland, T.R., Lohman, T.G., Sundgot-Borgen, J., Maughan, R.J., Meyer, N.L., Stewart, A.D., Müller, W. (2012). Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Medicine, 42(3): 227–249. https://doi.org/10.2165/11597140-000000000-00000
- Bland, J.M., Altman, D.G., Warner, D.S. (2012). Agreed Statistics: Measurement Method Comparison. The Journal of the American Society of Anesthesiologists, 116(1): 182–185. https://doi.org/10.1097/ALN.0b013e31823d7784
- Campa, F., Bongiovanni, T., Trecroci, A., Rossi, A., Greco, G., Pasta, G., Coratella, G. (2021). Effects of the COVID-19 Lockdown on Body Composition and Bioelectrical Phase Angle in Serie A Soccer Players: A Comparison of Two Consecutive Seasons. Biology, 10(11): 1175. https://doi.org/10.3390/biology10111175
- Campa, F., Matias, C.N., Moro, T., Cerullo, G., Casolo, A., Teixeira, F.J., Paoli, A. (2023). Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry. Nutrients, 15(2): 278. https://doi.org/10.3390/nu15020278
- Campa, F., Semprini, G., Judice, P. B., Messina, G., Toselli, S. (2019). Anthropometry, Physical and Movement Features, and Repeated-sprint Ability in Soccer Players. International Journal of Sports Medicine, 40(2): 100–109. https://doi.org/10.1055/a-0781-2473
- Campa, F., Toselli, S., Mazzilli, M., Gobbo, L. A., & Coratella, G. (2021). Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients, 13(5): 1620. https://doi.org/10.3390/nu13051620
- Carling, C., Orhant, E. (2010). Variation in body composition in professional soccer players: interseasonal and intraseasonal changes and the effects of exposure time and player position. Journal of Strength and Conditioning Research, 24(5): 1332–1339. https://doi.org/10.1519/JSC.0b013e3181cc6154
- Collins, J., Maughan, R. J., Gleeson, M., Bilsborough, J., Jeukendrup, A., Morton, J. P., Phillips, S. M., Armstrong, L., Burke, L. M., Close, G. L., Duffield, R., Larson-Meyer, E., Louis, J., Medina, D., Meyer, F., Rollo, I., Sundgot-Borgen, J., Wall, B. T., Boullosa, B., Dupont, G., Lizarraga, A., Res, P., Bizzini, M., Castagna, C., Cowie, C.M., Hooghe, M.D., Geye, H., Meyer, T., Papadimitriou, N., Vouillamoz, M., McCall, A. (2021). UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. British Journal of Sports Medicine, 55(8): 416. https://doi.org/10.1136/bjsports-2019-101961
- Durnin, J.V., Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The British Journal of Nutrition, 32(1): 77–97. https://doi.org/10.1079/BJN19740060
- Evans, E.M., Rowe, D.A., Misic, M.M., Prior, B.M., Arngrímsson, S.A. (2005). Skinfold prediction equation for athletes developed using a four-component model. Medicine and Science in Sports and Exercise, 37(11): 2006–2011. https://doi.org/10.1249/01.mss.0000176682.54071.5c
- Giro, R., Matias, C.N., Campa, F., Santos, D.A., Cavaca, M.L., Duque, P., Oliveira, M., Matos, N., Vicente, F., Pereira, P., Santos, H.O., Tinsley, G.M., Teixeira, F.J. (2022). Development and Validation of an Anthropometric Equation to Predict Fat Mass Percentage in Professional and Semi-Professional Male Futsal Players. Nutrients, 14(21): 4514. https://doi.org/10.3390/nu14214514
- Heymsfield, S., Lohman, T., Wang, Z., Going, S. (2005). Human body composition. Human Kinetics. https://doi.org/10.5040/9781492596950
- International Society for Advancement of Kinanthropometry. (2001). International standards for anthropometric assessment. International Society for the Advancement of Kinanthropometry.
- Jackson, A.S., Pollock, M.L. (1978). Generalized equations for predicting body density of men. The British Journal of Nutrition, 40(3): 497–504. https://doi.org/10.1079/BJN19780152
- Kasper, A.M., Langan-Evans, C., Hudson, J.F., Brownlee, T.E., Harper, L.D., Naughton, R.J., Morton, J.P., Close, G.L. (2021). Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients, 13(4): 1075. https://doi.org/10.3390/nu13041075
- Kirkendall, D.T., Grogan, J.W., Bowers, R.G. (1991). Field comparison of body composition techniques: hydrostatic weighing, skinfold thickness, and bioelectric impedance. The Journal of Orthopaedic and Sports Physical Therapy, 13(5): 235–239. https://www.jospt.org/doi/10.2519/jospt.1991.13.5.235
- Lin, L.I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1): 255–268. https://doi.org/10.2307/2532051
- López-Taylor, J.R., González-Mendoza, R.G., Gaytán-González, A., Jiménez-Alvarado, J.A., Villegas-Balcázar, M., Jáuregui-Ulloa, E.E., Torres-Naranjo, F. (2018). Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. Journal of Sports Medicine (Hindawi Publishing Corporation), 2018: 6843792. https://doi.org/10.1155/2018/6843792
- Mascherini, G., Gatterer, H., Lukaski, H., Burtscher, M., & Galanti, G. (2015). Changes in hydration, body-cell mass and endurance performance of professional soccer players through a competitive season. The Journal of Sports Medicine and Physical Fitness, 55(7–8): 749–755.
- Matias, C.N, Campa, F., Cavaca, M., Paoli, A., Teixeira, F. (2022). Fat-free mass estimation in male elite futsal players: development and validation of a new bioelectrical impedance-based predictive equation. Nutrition, 107: 111931. https://doi.org/10.1016/j.nut.2022.111931
- Matias, Catarina N, Campa, F., Santos, D.A., Lukaski, H., Sardinha, L.B., Silva, A.M. (2021). Fat-free Mass Bioelectrical Impedance Analysis Predictive Equation for Athletes using a 4-Compartment Model. International Journal of Sports Medicine, 42(1): 27–32. https://doi.org/10.1055/a-1179-6236
- McBride, G.B. (2007). Statistical calculators. Lin’s Concordance.
- Mondal, H., Mishra S.P. (2017). Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults. Journal of Clinical and Diagnostic Research. 11(6): https://doi.org/10.7860/JCDR/2017/25465.10039
- Nescolarde, L., Yanguas, J., Lukaski, H., Alomar, X., Rosell-Ferrer, J., Rodas, G. (2013). Localized bioimpedance to assess muscle injury. Physiological Measurement, 34(2): 237–245.
- Ostojic, S. M. (2002). Changes in body fat content of top-level soccer players. Journal of Sports Science & Medicine, 1(2): 54–55.
- Paoli, A., Cenci, L., Pompei, P., Sahin, N., Bianco, A., Neri, M., Caprio, M., Moro, T. (2021). Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients, 13(2): 374. https://doi.org/10.3390/nu13020374
- Paoli, A., Mancin, L., Caprio, M., Monti, E., Narici, M. V, Cenci, L., Piccini, F., Pincella, M., Grigoletto, D., & Marcolin, G. (2021). Effects of 30 days of ketogenic diet on body composition, muscle strength, muscle area, metabolism, and performance in semi-professional soccer players. Journal of the International Society of Sports Nutrition, 18(1): 62. https://doi.org/10.1186/s12970-021-00459-9
- Petri, C., Campa, F., Hugo Teixeira, V., Izzicupo, P., Galanti, G., Pizzi, A., Badicu, G., Mascherini, G. (2020). Body Fat Assessment in International Elite Soccer Referees. Journal of Functional Morphology and Kinesiology, 5(2): 38. https://doi.org/10.3390/jfmk5020038
- Reilly, T., George, K., Marfell-Jones, M., Scott, M., Sutton, L., Wallace, J. A. (2009). How well do skinfold equations predict percent body fat in elite soccer players?. International Journal of Sports Medicine, 30(8): 607–613. https://doi.org/10.1055/s-0029-1202353
- Santos, D.A., Dawson, J.A., Matias, C.N., Rocha, P.M., Minderico, C.S., Allison, D.B., Sardinha, L.B., Silva, A.M. (2014). Reference values for body composition and anthropometric measurements in athletes. PLoS ONE, 9(5): https://doi.org/10.1371/journal.pone.0097846
- Sardinha, L.B., Correia, I.R., Magalhães, J.P., Júdice, P.B., Silva, A.M., Hetherington-Rauth, M. (2020). Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes. European Journal of Clinical Nutrition, 74(12): 1646–1652. https://doi.org/10.1038/s41430-020-0666-8
- Silva, J.R., Brito, J., Akenhead, R., Nassis, G.P. (2016). The Transition Period in Soccer: A Window of Opportunity. Sports Medicine, 46(3): 305–313. https://doi.org/10.1007/s40279-015-0419-3
- Slimani, M., Nikolaidis, P.T. (2019). Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: a systematic review. The Journal of Sports Medicine and Physical Fitness, 59(1): 141–163. https://doi.org/10.23736/S0022-4707.17.07950-6
- Stratton, M.T., Smith, R.W., Harty, P.S., Rodriguez, C., Johnson, B.A., Dellinger, J.R., Williams, A.D., White, S.J., Benavides, M.L., Tinsley, G.M. (2021). Longitudinal agreement of four bioimpedance analyzers for detecting changes in raw bio impedance during purposeful weight gain with resistance training. European Journal of Clinical Nutrition, 75(7): 1060–1068. https://doi.org/10.1038/s41430-020-00811-3
- Suarez-Arrones, L., Lara-Lopez, P., Maldonado, R., Torreno, N., De Hoyo, M., Nakamura, F. Y., Di Salvo, V., & Mendez-Villanueva, A. (2019). The effects of detraining and retraining periods on fat-mass and fat-free mass in elite male soccer players. Peer Journal, 7: e7466. https://doi.org/10.7717/peerj.7466
- Suarez-Arrones, L., Petri, C., Maldonado, R.A., Torreno, N., Munguía-Izquierdo, D., Di Salvo, V., Méndez-Villanueva, A. (2018). Body fat assessment in elite soccer players: cross-validation of different field methods. Science and Medicine in Football, 2(3): 203–208. https://doi.org/10.1080/24733938.2018.1445871
- Wang, Z., Pi-Sunyer, F.X., Kotler, D. P., Wielopolski, L., Withers, R. T., Pierson, R. N. J., Heymsfield, S. B. (2002). Multicomponent methods: evaluation of new and traditional soft tissue mineral models by in vivo neutron activation analysis. The American Journal of Clinical Nutrition, 76(5): 968–974. https://doi.org/10.1093/ajcn/76.5.968
- Withers, R.T., Craig, N.P., Bourdon, P.C., Norton, K.I. (1987). Relative body fat and anthropometric prediction of body density of male athletes. European Journal of Applied Physiology and Occupational Physiology, 56(2): 191–200. https://doi.org/10.1007/BF00640643