Índice de cintura ajustado al peso como predictor independiente de sarcopenia en pacientes con diabetes mellitus tipo 2
Publicado 25-08-2025
Palabras clave
- Sarcopénico,
- Diabetes mellitus tipo,
- Antropometría,
- Índice de cintura ajustado al peso,
- Población India
Cómo citar
Derechos de autor 2025 Anil Kumar Yadav, Manjusha Shinde, Alpa Nasrin Samuel Shaikh, Rubia Mondal, Arpita Chakraborty, Subhadeep Ghoshal, Aruna Raju, Boudhayan Das Munshi, Tandra Ghosh

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Dimensions
Resumen
Introducción: La diabetes y la sarcopenia frecuentemente coexisten y afectan adversamente la fuerza muscular, la composición corporal y el rendimiento funcional en adultos. Identificar marcadores antropométricos que distingan efectivamente a individuos con y sin estas condiciones es crucial para la detección e intervención tempranas. Métodos: Comparamos grupos diabéticos y no diabéticos en atributos físicos: fuerza de prensión manual, circunferencia de pantorrilla (CC) y prueba de caminata de seis metros (6MWT). Evaluamos índices antropométricos, incluyendo la relación cintura-talla (WHtR), circunferencia de cintura (WC), relación cintura-cadera (WHR) e índice de cintura ajustado al peso (WWI), usando curvas de Característica Operativa del Receptor (ROC) (AUC) y la estadística J de Youden. Resultados: Encontramos que WWI mostró la capacidad discriminativa más alta con un AUC de 0.745 (IC del 95%: 0.630–0.859) y el índice de Youden más alto (0.445), lo que indica el mejor equilibrio general entre sensibilidad y especificidad. El WHtR demostró la mayor sensibilidad (0,806), mientras que el WHR alcanzó la mayor especificidad (0,977) y el mejor valor predictivo positivo (VPP = 0,857). El WWI también proporcionó el mayor valor predictivo negativo (VPN = 0,767). En conjunto, estos hallazgos destacan al WWI como el predictor general más sólido, con el WHtR y el WHR mostrando fortalezas complementarias en sensibilidad y especificidad, respectivamente. Conclusión: Establecer puntos de corte antropométricos simples y rentables para la sarcopenia en diabéticos indios puede facilitar el diagnóstico temprano en entornos clínicos y comunitarios de rutina, lo que permite una intervención oportuna y mejores resultados. El WWI puede considerarse para su inclusión en programas de cribado clínico y de salud pública dirigidos a personas con riesgo de diabetes y deterioro funcional relacionado con la sarcopenia.
Citas
- Ai, Y., Xu, R., Liu, L. (2021). The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetology and Metabolic Syndrome, 13(1): 93. https://doi.org/10.1186/s13098-021-00707-7
- Álvarez-Bustos, A., Carnicero, J.A., Coelho-Junior, H.J., Calvani, R., García-García, F.J., Marzetti, E., Landi, F., Rodriguez-Mañas, L. (2024). Diagnostic and prognostic value of calf circumference for sarcopenia in community-dwelling older adults. Journal of Nutrition, Health and Aging, 28(8): 100290. https://doi.org/10.1016/j.jnha.2024.100290
- Andersen, H., Nielsen, S., Mogensen, C.E., Jakobsen, J. (2004). Muscle strength in type 2 diabetes. Diabetes, 53(6): 1543–1548. https://doi.org/10.2337/diabetes.53.6.1543
- Batsis, J.A., Mackenzie, T.A., Barre, L.K., Lopez-Jimenez, F., Bartels, S.J. (2014). Sarcopenia, sarcopenic obesity and mortality in older adults: Results from the National Health and Nutrition Examination Survey III. European Journal of Clinical Nutrition, 68(9):1001-1007. https://doi.org/10.1038/ejcn.2014.117
- Batsis, J.A., Villareal, D.T. (2018). Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. In Nature Reviews Endocrinology, 14(9): 513–537. https://doi.org/10.1038/s41574-018-0062-9
- Belfield, A.E., Wilkinson, T.J., Henson, J., Sargeant, J.A., Breen, L., Hall, A.P., Davies, M.J., Yates, T. (2024). Sarcopenia prevalence using handgrip strength or chair stand performance in adults living with type 2 diabetes mellitus. Age and Ageing, 53(5): afae090. https://doi.org/10.1093/ageing/afae090
- Bohannon, R.W. (2008). Handgrip dynamometry predicts future outcomes in aging adults. Journal of Geriatric Physical Therapy, 31(1): 3-10. https://doi.org/10.1519/00139143-200831010-00002
- Carter, J.E.L. (2002). Part 1: The Heath-Carter anthropometric somatotype-instruction manual. Department of Exercise and Nutritional Sciences San Diego State University, 1-26.
- Chen, L.K., Woo, J., Assantachai, P., Auyeung, T.W., Chou, M.Y., Iijima, K., Jang, H.C., Kang, L., Kim, M., Kim, S., Kojima, T., Kuzuya, M., Lee, J.S.W., Lee, S.Y., Lee, W.J., Lee, Y., Liang, C.K., Lim, J.Y., Lim, W.S., … Arai, H. (2020). Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21(3):300-307.
- Dhar, M., Kapoor, N., Suastika, K., Khamseh, M. E., Selim, S., Kumar, V., Raza, S.A., Azmat, U., Pathania, M., Rai Mahadeb, Y.P., Singhal, S., Naseri, M.W., Aryana, I.S., Thapa, S.D., Jacob, J., Somasundaram, N., Latheef, A., Dhakal, G.P., Kalra, S. (2022). South Asian Working Action Group on SARCOpenia (SWAG-SARCO) – A consensus document. Osteoporosis and Sarcopenia, 8(2): 35-57. https://doi.org/10.1016/j.afos.2022.04.001
- Esparza-Ros, F., Vaquero-Cristóbal, R., Marfell-Jones, M. (2019). International standards for anthropometric assessment. International Society for the Advancement of Kinanthropometry (ISAK).
- Kalyani, R.R., Corriere, M., Ferrucci, L. (2014). Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. In The Lancet Diabetes and Endocrinology, 2(10): 819–829. https://doi.org/10.1016/S2213-8587(14)70034-8
- Kawakami, R., Murakami, H., Sanada, K., Tanaka, N., Sawada, S.S., Tabata, I., Higuchi, M., Miyachi, M. (2015). Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatrics and Gerontology International, 15(8):969-976. https://doi.org/10.1111/ggi.12377
- Khader, Y., Batieha, A., Jaddou, H., El-Khateeb, M., Ajlouni, K. (2019). The performance of anthropometric measures to predict diabetes mellitus and hypertension among adults in Jordan. BMC Public Health, 19(1):1416. https://doi.org/10.1186/s12889-019-7801-2
- Kim, T.N., Choi, K.M. (2013). Sarcopenia: Definition, Epidemiology, and Pathophysiology. Journal of Bone Metabolism, 20(1): 1. https://doi.org/10.11005/jbm.2013.20.1.1
- Liu, J., Zhu, Y., Tan, J.K., Ismail, A.H., Ibrahim, R., Hassan, N.H. (2023). Factors Associated with Sarcopenia among Elderly Individuals Residing in Community and Nursing Home Settings: A Systematic Review with a Meta-Analysis. In Nutrients, 15(20):4335. https://doi.org/10.3390/nu15204335
- Martone, A.M., Levati, E., Ciciariello, F., Galluzzo, V., Salini, S., Calvani, R., Marzetti, E., Landi, F. (2025). Impact of waist-to-hip and waist-to-height ratios on physical performance: insights from the Longevity Check-up 8+ project. Aging. https://doi.org/10.18632/aging.206260
- Mesinovic, J., Zengin, A., De Courten, B., Ebeling, P.R., Scott, D. (2019). Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. In Diabetes, Metabolic Syndrome and Obesity, 12:1057-1072. https://doi.org/10.2147/DMSO.S186600
- Park, M.J., Hwang, S.Y., Kim, N.H., Kim, S.G., Choi, K.M., Baik, S.H., Yoo, H.J. (2023). A Novel Anthropometric Parameter, Weight-Adjusted Waist Index Represents Sarcopenic Obesity in Newly Diagnosed Type 2 Diabetes Mellitus. Journal of Obesity and Metabolic Syndrome, 32(2): 130. https://doi.org/10.7570/jomes23005
- Qiao, Y.S., Chai, Y.H., Gong, H.J., Zhuldyz, Z., Stehouwer, C.D.A., Zhou, J.B., Simó, R. (2021). The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. In Frontiers in Endocrinology, 12:782391. https://doi.org/10.3389/fendo.2021.782391
- Rolland, Y., Lauwers-Cances, V., Cournot, M., Nourhashémi, F., Reynish, W., Rivière, D., Vellas, B., Grandjean, H. (2003). Sarcopenia, calf circumference, and physical function of elderly women: A cross-sectional study. Journal of the American Geriatrics Society, 51(8): 1120-1124. https://doi.org/10.1046/j.1532-5415.2003.51362.x
- Seok, W.P., Goodpaster, B.H., Strotmeyer, E.S., Kuller, L.H., Broudeau, R., Kammerer, C., De Rekeneire, N., Harris, T.B., Schwartz, A.V., Tylavsky, F.A., Yong-Wook, C., Newman, A.B. (2007). Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes Care, 30(6):1507-1512. https://doi.org/10.2337/dc06-2537
- Tsai, A.C.H., Lai, M.C., Chang, T.L. (2012). Mid-arm and calf circumferences (MAC and CC) are better than body mass index (BMI) in predicting health status and mortality risk in institutionalized elderly Taiwanese. Archives of Gerontology and Geriatrics, 54(3):443-447. https://doi.org/10.1016/j.archger.2011.05.015
- Volpato, S., Bianchi, L., Lauretani, F., Lauretani, F., Bandinelli, S., Guralnik, J. M., Zuliani, G., & Ferrucci, L. (2012). Role of muscle mass and muscle quality in the association between diabetes and gait speed. Diabetes Care, 35(8):1672-1679. https://doi.org/10.2337/dc11-2202
- Yoo, M.C., Won, C.W., Soh, Y. (2022). Association of high body mass index, waist circumference, and body fat percentage with sarcopenia in older women. BMC Geriatrics, 22(1): 937. https://doi.org/10.1186/s12877-022-03643-x