Differences in the obesity screening ability of 19 anthropometric parameters in young Japanese females: Comparisons of direct measurements, conventional and novel indices

Masaharu Kagawa
Institute of Nutrition Sciences, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama. 350-0288, Japan.

Published 31-12-2021

Keywords

  • Anthropometry,
  • Indices,
  • Obesity screening,
  • Japanese,
  • Young females,
  • DXA
  • ...More
    Less

How to Cite

Kagawa, M. (2021). Differences in the obesity screening ability of 19 anthropometric parameters in young Japanese females: Comparisons of direct measurements, conventional and novel indices. International Journal of Kinanthropometry, 1(1), 41–52. https://doi.org/10.34256/ijk2117

Dimensions

Abstract

Aim: The present study aimed to examine the usefulness of anthropometric parameters for obesity screening in young Japanese females by assessing their associations with indicators of adiposity obtained from a dual energy x-ray absorptiometry (DXA). Methods: Screening ability of 19 anthropometric parameters was examined using a total of 50 young Japanese females who completed detailed anthropometry and a whole-body DXA scan. Anthropometric parameters were categorized into 1) measured variables, 2) conventional indices, and 3) novel indices and their correlations with body fat variables obtained from DXA were investigated. Using a percentage body fat (%BF) of 30.0% as a cut-off point of obesity, the Area Under the Curve (AUC) was observed from the Receiver Operating Characteristics (ROC) analysis and cut-off points of anthropometric parameters were determined. Results: While body mass correlated highly with total fat tissue mass in this sample (r = 0.847), body mass index (BMI) and waist circumference (WC) correlated most strongly with trunk fat and android fat tissues respectively (r = 0.820 and 0.865). However, all body composition variables were correlated with the sum of eight skinfolds (Sum8SF) if %BF was used (r ranged 0.672 – 0.834). Among anthropometric parameters examined, Ʃ8SF showed highest AUC for %BFTotal, %BFGynoid and %BFIAAT while Ʃ2SF and abdominal circumference (AbC) showed highest AUC for %BFTrunk and %BFAndroid respectively. Conclusion: Directly measured variables and conventional indices showed moderate to strong correlations with results from DXA. However, the sum of skinfolds, particularly Sum8SF, showed stronger correlations and superior screening ability for obesity. Although many novel indices have been utilized to screen obesity and metabolic abnormalities, observed results indicated that these indices may not necessarily better than measured values or conventional indices. Further investigations to confirm proposed cut-off points are warranted.

References

  1. Ashwell M. Hsieh S. D. (2005). Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. International Journal of Food Science and Nutrition, 56(5): 303-307.
  2. Basen-Engquist K. Chang M. (2011). Obesity and cancer risk: recent review and evidence. Current Oncology Reports, 13(1): 71-76.
  3. Bergman R. N., Stefanovski D., Buchanan, T. A., Sumner A. E., Reynolds J. C., Sebring N. G., Xiang A. H. Watanabe R. M. (2011). A better index of body adiposity. Obesity (Silver Spring), 19(5): 1083-1089.
  4. Boeke C. E., Oken E., Kleinman K. P., Rifas-Shiman S. L., Taveras E. M., Gillman, M. W. (2013). Correlations among adiposity measures in school-aged children. BMC Pediatrics, 13: 99.
  5. Bray G. A. (1993). Fat distribution and body weight. Obesity Research, 1(3): 203-205.
  6. Chaput J. P., Katzmarzyk P. T., Barn es J. D., Fogelholm M., Hu G., Kuriyan R., Kurpad A., Lambert E. V., Maher C., Maia J., Matsudo V., Olds T., Onywera V., Sarmiento O. L., Standage M., Tudor-Locke C., Zhao P., Tremblay M. S., ISCOLE Research Group (2016). Mid-upper arm circumference as a screening tool for identifying children with obesity: a 12-country study. Pediatric Obesity.
  7. Ferretti Rde L., Cintra Ide P., Passos M. A., de Moraes Ferrari, G. L., Fisberg, M. (2015). Elevated neck circumference and associated factors in adolescents. BMC Public Health [Electronic resource], 15: 208.
  8. Gore C., Norton K., Olds T., Whittingham N., Birchall K., Clough M., Dickerson B., Downie L. (1996). Accreditation in anthropometry: an Australian model. In Norton, K. & Olds, T. (Eds.) Anthropometrica. University of New South Wales Press. Sydney.
  9. Hill A. M., LaForgia J., Coates A. M., Buckley J. D., Howe P. R. C. (2007). Estimating abdominal adipose tissue with DXA and anthropometry. Obesity, 15(2): 504-510.
  10. Hu L., Hu G., Huang X., Zhou W., You C., Li J., Li P., Wu Y., Wu Q., Wang Z., Gao R., Bao H., Cheng X. (2020). Different adiposity indices and their associations with hypertension among Chinese population from Jiangxi province. BMC Cardiovascular Disorders, 20 (1): 115.
  11. Huenemann R. L., Hampton M. C., Shapiro L. R. Behnke A. R. (1966). Adolescent food practices associated with obesity. Federation Proceedings, 25 (4): 4-10.
  12. Huxley R., Mendi S., Zheleznyakov E., Reddy S., Chan J. (2010). Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk--a review of the literature. European Journal of Clinical Nutrition, 64(1): 16-22.
  13. International Diabetes Federation (2006). The IDF consensus worldwide definition of the metabolic syndrome. Brussels.
  14. Japanese Society for the Study of Obesity (2016). Guidelines for the management of obesity disease 2016. Life Science Publisher, Tokyo, Japan.
  15. Kagawa M., Byrne N. M., Hills A. P. (2008a). Comparison of body fat estimation using waist to height ratio (WHtR) using different "waist" measurements in Australian adults. British Journal of Nutrition, 100(5): 1135-1141.
  16. Kagawa M., Kuroiwa C., Uenishi K., Mori M., Hills A. P., Binns C. W. (2007). New percentage body fat prediction equations for Japanese females. Journal of Physiological Anthropology, 26 (1): 23-29.
  17. Kagawa M., Tahara Y., Byrne N. M., Moji K., Tsunawake, N., Hills A. P. (2008b). Are Japanese obesity criteria useful for screening at risk Japanese? Consideration from anthropometric indices-percentage body fat relationships. Asia Pacific Journal of Public Health, 20 (Suppl): 102-110.
  18. Kagawa M., Uenishi K., Kuroiwa C., Mori M., Binns C. W. (2006). Is the BMI cut-off level for Japanese females for obesity set too high? - A consideration from body composition perspective. Asia Pacific Journal of Clinical Nutrition, 15 (4): 502-507.
  19. Kagawa M., Uenishi K., Mori M., Uchida H., Kerr D. A., Binns C. W., Hills A. P. (2010). Obesity screening for young Japanese males and females using skin fold measurements: the classification revisited. Asia Pacific Journal of Clinical Nutrition, 19 (2): 289-293.
  20. Kaneko R., Nakazaki N., Tagawa T., Ohishi C., Kusayanagi S., Kim M., Baba T., Ogawa, M., Sato, Y. (2014). A new index of abdominal obesity which effectively predicts risk of colon tumor development in female Japanese. Asian Pacific Journal of Cancer Prevention, 15 (2): 1005-1010.
  21. Krakauer N. Y., Krakauer J. C. (2012). A new body shape index predicts mortality hazard independently of body mass index. PLoS One, 7 (7): e39504.
  22. Liu, J. Fan D., Wang X., Yin F. (2020). Association of two novel adiposity indicators with visceral fat area in type 2 diabetic patients: Novel adiposity indexes for type 2 diabetes. Medicine (Baltimore), 99 (19): e20046.
  23. McMorrow A. M., Connaughton R. M., Lithander F. E., Roche H. M. (2015). Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality. Proceedings of Nutrition Society, 74 (1), 67-82.
  24. Nagamine S., Suzuki, S. (1964). Anthropometry and body composition of Japanese among men and women. Human Biology, 36: 8-15.
  25. NCD Risk Factor Collaboration (NCD-RisC) (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet, 387 (10026), 1377-1396.
  26. Okunogbe A., Nugent R., Spencer G., Ralston J., Wilding J. (2021). Economic impacts of overweight and obesity: current and future estimates for eight countries. BMJ Global Health, 6:e006351. doi:10.1136/bmjgh-2021-006351
  27. Rosenblad A., NLeppert J., Nilsson G. (2011). The waist-hip-height-ratio (WHHR): an improvement of the waist-hip-ratio for predicting all-cause mortality. Journal of Diabetes, 3 (s1): 231.
  28. Ross R., Neeland I. J., Yamashita S., Shai I., Seidell J., Magni P., Santos R. D., Arsenault, B. Cuevas A., Hu F. B., Griffin B. A., Zambon A., Barter P., Fruchart J. C., Eckel R. H., Matsuzawa Y., Despres J. P. (2020). Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nature Reviews Endocrinolog, 16 (3): 177-189.
  29. Saponaro C., Gaggini M., Carli, F., Gastaldelli, A. (2015). The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients, 7 (11): 9453-9474.
  30. Specchia M. L., Veneziano M. A., Cadeddu C., Ferriero A. M., Mancuso A., Ianuale C., Parente P., Capri S., Ricciardi W. (2015). Economic impact of adult obesity on health systems: a systematic review. European Journal of Public Health, 25 (2): 255-262.
  31. Stewart A., Marfell-Jones M., Olds, T., de Ridder, H. (2012) International standards for anthropometric assessment (2011). ISAK: Lower Hutt,, New Zealand.
  32. The Examination Committee of Criteria for 'Obesity Disease' in Japan (2002) New criteria for 'obesity disease' in Japan. Circulation Journal, 66 (11): 987-992.
  33. Thomas D. M., Bredlau C., Bosy-Westphal A., Mueller M., Shen W., Gallagher D., Maeda Y., McDougall A., Peterson C. M., Ravussin E., Heymsfield S. B. (2013). Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring), 21 (11):2264-2271.
  34. Unal I., (2017). Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Computational and Mathematical Methods in Medicine, 2017: 1-14, Article ID3762651|https://doi.org/10.1155/2017/3762651
  35. Valdez R., Seidell J. C., Ahn Y. I., Weiss K. M. (1993). A new index of abdominal adiposity as an indicator of risk for cardiovascular disease. A cross-population study. International Journal of Obesity and Related Metabolic Disorders, 17 (2): 77-82.
  36. Wang J., Thornton J. C., Kolesnik, S., Pierson Jr, R. N. (2000). Anthropometry in body composition. An overview. Annals of New York Academy of Science, 904:317-326.
  37. WHO expert consultation (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet, 363 (10): 157-163.
  38. Wilmore J. H., Buskirk E. R., DiGirolamo M., Lohman, T. G. (1986). Body composition-a round table-. The Physician and Sportsmedicine, 14 (3): 144-162.
  39. World Health Organization (1997). Obesity: Preventing and managing the global epidemic. WHO/NUT/NCD/98.1. Geneva.
  40. World Health Organization (2011). Waist circumference and waist-hip ratio: Report of a WHO Expert Consultation Geneva.
  41. Yamborisut U., Sakamoto N., Visetchart, P., Tontisirin, K. (2012). Central body fat distribution indices in Thai preschool children. Open Journal of Pediatrics, 2 (1), 47-52.
  42. Yang H. I., Cho W., Ahn K. Y., Shin S. C., Kim J. H., Yoo S., Park Y. I., Lee E. Y., Lee D. H., Spence J. C., Jeon J. Y., (2020). A new anthropometric index to predict percent body fat in young adults. Public Health Nutrition, 23 (9): 1507-1514.