Application of Therapeutic Hot and Cold Agents Result in Altered Measurement of Skinfold Thickness
Published 06-12-2024
Keywords
- Anthropometry,
- Skinfold thickness,
- Cryotherapy,
- Thermotherapy
How to Cite
Copyright (c) 2024 Susan Lennie, Lia Garden, Andy Hall

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dimensions
Abstract
Introduction: Accurate determination of body composition is crucial for athletic assessment and training. The International Society for the Advancement of Kinanthropometry suggest that skinfold measurements may be affected by conditions such as recent training, competition, sauna swimming or showering, as heat may increase values due to an associated increase in blood flow; however this effect has not previously been demonstrated. Methods: This intervention trial, with crossover design, aimed to investigate the effect of modified skin surface temperatures following topical thermal applications on skinfold thickness at the bicep and tricep. Skinfold thickness (SF) and skin surface temperature pre- and post-application of a heated pad and cold gel pad was recorded in 54 young adults. Results: Heat application led to a small, but significant, reduction in tricep SF and no significant change in bicep SF, while cold application resulted in a small, but significant, increase in bicep SF but not tricep SF. These changes may be attributed to alterations in tissue extensibility and creep rate. Conclusions: This study indicates that topical application of heat or cold can influence skinfold measurement, highlighting the importance of standardising measurement conditions. However, further research is needed to clarify whether this is a biological effect or a technical error of measurement.
References
- Ackland, T.R., Elliott, B., Bloomfield, J. (2009). Applied anatomy and biomechanics in sport. Human Kinetics, United Kingdom.
- Ackland, T.R., Lohman, T.G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N.L., Stewart, A.D., Müller, W. (2012). Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the IOC Medical Commission. Sports medicine, 42: 227-249. https://doi.org/10.2165/11597140-000000000-00000
- Bacchetti, P., Wolf, L.E., Segal, M.R., McCulloch, C.E. (2005). Ethics and sample size. American Journal of Epidemiology, 161(2): 105-110. https://doi.org/10.1093/aje/kwi014
- Bleakley, C.M., Costello, J.T. (2013). Do thermal agents affect range of movement and mechanical properties in soft tissues? A systematic review. Archives of Physical Medicine and Rehabilitation, 94(1): 149-163. https://doi.org/10.1016/j.apmr.2012.07.023
- Bleakley, C.M., Hopkins, J.T. (2010). Is it possible to achieve optimal levels of tissue cooling in cryotherapy? Physical Therapy Reviews, 15(4): 344-350. https://doi.org/10.1179/174328810X12786297204873
- Bullen, B.A., Quaade, F., Olesen, E., & Lund, S.A. (1965). Ultrasonic reflections used for measuring subcutaneous fat in humans. Human Biology, 37(4): 375-384.
- Cintra-Andrade, J.H., Ripka, W.L., & Heymsfield, S.B. (2023). Skinfold calipers: Which instrument to use? Journal of Nutritional Science, 12: e82. https://doi.org/10.1017/jns.2023.58
- Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1): 155-159. https://doi.org/10.1037//0033-2909.112.1.155
- Draper, D.O., & Ricard, M.D. (1995). Rate of temperature decay in human muscle following 3 MHz ultrasound: The stretching window revealed. Journal of Athletic Training, 30(4): 304-397.
- Draper, D.O., Castel, J.C., Castel, D. (1995). Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. Journal of Orthopaedic & Sports Physical Therapy, 22(4): 142-150. https://doi.org/10.2519/jospt.1995.22.4.142
- Du, X., Li, B., Liu, H., Yang, D., Yu, W., Liao, J., Huang, Z., & Xia, K. (2014). The response of human thermal sensation and its prediction to temperature step-change (cool-neutral-cool). PloS One, 9(8): e104320. https://doi.org/10.1371/journal.pone.0104320.
- Durnin, J.V., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32(1): 77-97. https://doi.org/10.1079/bjn19740060
- Esparza-Ros, F., Moreira, A.C., Vaquero-Cristóbal, R., Barrigas, C., Albaladejo-Saura, M., & Vieira, F. (2022). Differences between four skinfold calipers in the assessment of adipose tissue in young adult healthy population. Nutrients, 14(10): 2085. https://doi.org/10.3390/nu14102085
- Esparza-Ros, F., Vaquero-Cristóbal, R., & Marfell-Jones, M. (2019). International standards for anthropometry assessment. Murcia, SPAIN: The International Society for the Advancement of Kinanthropometry.
- Franklin, P.J., Green, D.J., & Cable, N.T. (1993). The influence of thermoregulatory mechanisms on post-exercise hypotension in humans. Journal of Physiology, 470(1): 231-241. https://doi.org/10.1113/jphysiol.1993.sp019856
- Geerligs, M., Peters, G.W.M., Ackermans, P.A.J., Oomens, C.W.J. & Baaijens, F.P.T. (2008). Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology, 45(6): 677-688.
- Gomes, A.C., Landers, G.J., Binnie, M.J., Goods, P.S.R., Fulton, S.K., & Ackland, T.R. (2020). Body composition assessment in athletes: Comparison of a novel ultrasound technique to traditional skinfold measures and criterion DXA measure. Journal of Science and Medicine in Sport, 23(11): 1006-1010. https://doi.org/10.1016/j.jsams.2020.03.014
- Hoffmann, J., Thiele, J., Kwast, S., Borger, M.A., Schroter, T., Falz, R., & Busse, M. (2022). Measurement of subcutaneous fat tissue: Reliability and comparison of caliper and ultrasound via systematic body mapping. Scientific Reports, 12: 15798. https://doi.org/10.1038/s41598-022-19937-4
- Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41: 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278
- International Society for the Advancement of Kinanthropometry (ISAK). (2001). International standards for anthropometric assessment. The International Society for the Advancement of Kinanthropometry, Australia.
- Jutte, L., Hawkins, J., Miller, K.C., Long, B.C., & Knight, K.L. (2012). Skinfold thickness at 8 common cryotherapy sites in various athletic populations. Journal of Athletic Training, 47(2): 170-177. https://doi.org/10.4085/1062-6050-47.2.170
- Kalli, K., & Fousekis, K. (2020). The effects of cryotherapy on athletes’ muscle strength, flexibility, and neuromuscular control: A systematic review of the literature. Journal of Bodywork and Movement Therapies, 24(2): 175-188. https://doi.org/10.1016/j.jbmt.2019.11.001
- Kanlayanaphotporn, R., Janwantanakul, P. (2005). Comparison of skin surface temperature during the application of various cryotherapy modalities. Archives of Physical Medicine and Rehabilitation, 86(7): 1411-1415. https://doi.org/10.1016/j.apmr.2004.11.034
- Kasper, A.M., Langan-Evans, C., Hudson, J.F., Brownlee, T.E., Harper, L.D., Naughton, R.J., Morton, J.P., & Close, G.L. (2021). Come back skinfolds, all is forgiven: A narrative review of the efficacy of common body composition methods in applied sports practice. Nutrients, 13(4): 1075. https://doi.org/10.3390/nu13041075
- Kennet, J., Hardaker, N., Hobbs, S., Selfe, J. (2007). Cooling efficiency of 4 common cryotherapeutic agents. Journal of Athletic Training, 42(3): 343-348.
- Kissinger, H.E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4): 217-221. http://dx.doi.org/10.6028/jres.057.026
- Lehmann, J.F. (1990). Therapeutic heat and cold. Williams & Wilkins, Baltimore
- Marfell-Jones, M., Olds, T., Stewart, A., & Carter, J.E.L. (2006) International standards for anthropometric assessment. The International Society for the Advancement of Kinanthropometry, South Africa.
- Mattar, E.H. (2011). Effect of age on the biomechanical and microcirculatory properties of the skin in healthy individuals and during venous ulceration. Indian Journal of Dermatology, 56(1): 19-24. https://doi.org/10.4103/0019-5154.77545
- Meeusen, R., Lievens, P. (1986). The use of cryotherapy in sports injuries. Sports Medicine, 3(6): 398-414. https://doi.org/10.2165/00007256-198603060-00002
- Mochlovitz, S. (1996). Thermal agents in rehabilitation. F.A. Davis Company, Philadelphia.
- Nadler, S.F., Weingand, K., Kruse, R.J. (2004). The physiological basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner. Pain Physician, 7(3): 395-399.
- Norton, K., Hayward, S., Charles, S., Rees, M. (2000). The effects of hypohydration and hyperhydration on skinfold measurements. The International Society for the Advancement of Kinanthropometry, Australia.
- Norton, K., Olds, T. (1996). Anthropometrica: a textbook of body measurement for sports and health courses. University of New South Wales Press.
- Nösslinger, H., Mair, E., Toplak, H., Hörmann-Wallner, M. (2022). Measuring subcutaneous fat thickness using skinfold calipers vs. high-resolution B-scan ultrasonography in healthy volunteers: A pilot study. Clinical Nutrition Open Science, 41: 19-32. https://doi.org/10.1016/j.nutos.2021.11.007
- Perini, T.A., De Oliveira, G.L., Ornellas, J.D.S., De Oliveira, F.P. (2005). Technical error of measurement in anthropometry. Revista Brasileira de Medicina do Esporte, 11(1): 86-90. https://doi.org/10.1590/S1517-86922005000100009
- Racinais, S., Cocking, S., & Périard, J.D. (2017). Sports and environmental temperature: From warming-up to heating-up. Temperature, 4(3): 227-257. https://doi.org/10.1080/23328940.2017.1356427
- Remvig, L., Duhn, P.H., Ullman, S., Kobayasi, T., Hansen, B., Juul-Kristensen, B., Jurvelin, J.S. & Arokoski, J. (2009). Skin extensibility and consistency in patients with Ehlers–Danlos syndrome and benign joint hypermobility syndrome. Scandinavian Journal of Rheumatology, 38(3): 227-230. https://doi.org/10.1080/03009740802520714
- Ruiz, L., Colley, J.R.T., & Hamilton, P.J.S. (1971). Measurement of triceps skinfold thickness: An investigation of sources of variation. British Journal of Preventive and Social Medicine, 25(3): 165-167. https://doi.org/10.1136/jech.25.3.165
- Saltin, B., & Hermansen, L. (1966). Esophageal, rectal, and muscle temperature during exercise. Journal of Applied Physiology, 21(6): 1757-1762. https://doi.org/10.1152/jappl.1966.21.6.1757
- Shankman, G.A., & Manske, R.C. (2014). Fundamental orthopaedic management for the physical therapist assistant. Elsevier Health Sciences, Oxford.
- Shim, A., Cross, P., Norman, S., Hauer, P. (2014). Assessing various body composition measurements as an appropriate tool for estimating body fat in national collegiate athletic association division I female collegiate athletes. American Journal of Sports Science and Medicine, 2(1): 1-5.
- Sicotte, M., Ledoux, M., Zunzunegui, M., Ag Aboubacrine, S., Nguyen, V. & the ATARAO group (2010). Reliability of anthropometric measures in a longitudinal cohort of patients initiating ART in West Africa. BMC Medical Research Methodology, 10: 102-110. https://doi.org/10.1186/1471-2288-10-102
- Sommer, G., Eder, M., Kovacs, L., Pathak, H., Bonitz, L., Mueller, C., Regitnig, P., & Holzapfel, G.A. (2013). Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomaterialia, 9(11): 9036-9048. https://doi.org/10.1016/j.actbio.2013.06.011
- Stewart, A., Marfell-Jones, M., Olds, T., & De Ridder, H. (2011). International standards for anthropometric assessment. Lower Hutt. The International Society for the Advancement of Kinanthropometry, New Zealand.
- Sugihara, T., Ohura, T., Homma, K., & Igawa, H.H. (1991). The extensibility in human skin: Variation according to age and site. British Journal of Plastic Surgery, 44(6): 418-422. https://doi.org/10.1016/0007-1226(91)90199-t
- Sunitha, J. (2010). Cryotherapy – A review. Journal of Clinical and Diagnostic Research, 4(2): 2325-2329.
- Toselli, S. (2021). Body composition and physical health in sports practice: An editorial. International Journal of Environmental Research and Public Health, 18(9): 4534. https://doi.org/10.3390/ijerph18094534
- Uchio, Y., Ochi, M., Fujihara, A., Adachi, N., Iwasa, J., & Sakai, Y. (2003). Cryotherapy influences joint laxity and position sense of the healthy knee joint. Archives of Physical Medicine and Rehabilitation, 84(1): 131-135. https://doi.org/10.1053/apmr.2003.50074
- Wang, Y., Li, S., Zhang, Y., Chen, Y., Yan, F., Han, L., Ma, Y. (2021). Heat and cold therapy reduce pain in patients with delayed onset muscle soreness: A systematic review and meta-analysis of 32 randomized controlled trials. Physical Therapy in Sport, 48: 177-187. https://doi.org/10.1016/j.ptsp.2021.01.004